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Dilute mixtures of 3He in superfluid 4He have Prandtl numbers easily tunable between 
those of liquid metals and water: 0.04 < Pr < 2. Moreover, owing to the tight coupling 
of the temperature and concentration fields, superfluid mixture convection is closely 
analogous to classical Rayleigh-Bdnard convection, i.e. superfluid mixtures convect 
as if they were classical, single-component fluids, well described by the Boussinesq 
equations. This work has two goals. The first is to put the theory of superfluid 
mixture convection on a firmer basis. We accomplish this by combining experiment 
and analysis to measure superfluid effects on the onset of convection. In the process, 
we demonstrate quantitative control over superfluid effects and, in particular, that 
deviations from classical convective behaviour can be made small or at worst no 
larger than finite aspect ratio effects. The size of superfluid effects at convective 
onset can be less than a few percent for temperatures 1 < T < 2 K. Comparison 
of the measured properties of superfluid mixture roll instabilities above the onset of 
convection (e.g. skewed varicose, oscillatory, and particularly near the codimension-2 
point) to the properties predicted by Boussinesq calculations further verifies that 
superfluid mixtures convect as classical fluids. 

With superfluid effects understood and under control, the second goal, presented 
in Part 2, is to exploit the unique Pr range of superfluid mixtures and the variable 
aspect ratio (r ) capabilities of our experiment to survey convective instabilities in 
the broad, and heretofore largely unexplored, parameter space 0.12 < Pr < 1.4 and 
2 < r < 95. The aim is to identify and characterize time-dependence and chaos, and 
to discover new dynamical behaviour in strongly nonlinear convective flows. 

1. Introduction 
Rayleigh-Bhard convection (RBC), convection in a horizontal layer of fluid subject 

to a destabilizing density gradient, has become a prototypical experiment for the study 
of dynamical systems undergoing both linear and nonlinear instabilities. Superfluid 
mixture convection (SMC) is an analogous but much less studied form of convection 
that occurs when an adverse density gradient is created in a horizontal layer of 
a dilute mixture of 3He in superfluid 4He. An important motivation for using 
such a novel fluid is the remarkable Prandtl number range available with superfluid 
mixtures - 0.04 < Pr < 2. Over this range the dynamics of RBC rolls is expected 
to vary dramatically, but no conventional fluid spans this range. For instance, 
liquid metals lie at the lowest Prandtl numbers, gases near Pr = 0.7, and water or 
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other dense fluids roughly above Pr = 2. This Pr range gives SMC the potential 
to be an extremely valuable tool for understanding convective flows by expanding 
the experimental parameter space to areas that previously could only be studied 
theoretically. 

However, it is not obvious that experiments on SMC should be directly related to 
calculations for RBC that explicitly assume a classical single-component fluid. Nom- 
inally, superfluids have very different properties from classical fluids, and ordinary 
binary mixtures show very different convective states from classical single-component 
fluids. Nonetheless, we present analytical and experimental evidence to demonstrate 
that convecting superfluid mixtures behave analogously to single-component classi- 
cally convecting liquids. For a broad range of conditions we are able to quantify 
and control the deviations of SMC from RBC and show that these deviations can be 
made negligibly small. 

The goals of this work are twofold: first, to test with both experiment and theory 
the analogy between RBC and SMC; second, in Part 2 (Metcalfe & Behringer 1996), 
to survey new convective instabilities and behaviour in the enlarged parameter space 
available with SMC. In the remainder of the introduction we briefly review relevant 
features of RBC and SMC. Much of this work involves a novel cryogenic apparatus 
that we describe in $2. In $3 we consider the equations of motion for SMC and show 
the results of experiments used to quantify differences between RBC and SMC near 
the onset of convection. Section 4 presents further data investigating nonlinear roll 
instabilities, in particular near the predicted codimension-2 point. We summarize the 
results of Part 1 in $5. 

1.1. Control parameters and response variables 

To streamline the subsequent presentation, we define several essential terms in this 
section. Relevant control parameters are the Rayleigh and Prandtl numbers and a 
roll wavevector, defined respectively as 

V n  Pr = -, 
Xef f 

2nd 
q = -. 

1 
Here AT is the temperature difference across a fluid layer of height d ;  the fluid 
parameters, X e f f  and v are respectively the expansion coefficient at constant 
pressure and 4He chemical potential p4, an effective thermal diffusivity, as defined in 
Fetter (1982a, b), and the kinematic viscosity; g is the acceleration due to gravity; 
v, = (p /p , )v ,  where p and p n  are respectively the total and normal fluid densities. 
Specifically, X e f f  is constructed from the effective thermal conductivity x e f f  and an 
appropriate specific heat. The conductivity is ‘effective’ because in these mixtures heat 
flow consists of an ordinary diffusive component and a component associated with 
superfluid flow - both of which are proportional to the temperature gradient. Also, 
1 is the wavelength of the convection pattern, or alternatively, the length of a pair of 
convection rolls. 
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Many calculations assume a horizontally infinite fluid layer, but for an experiment, 
the value of q is set (at onset) in response to the fluid container size and the third 
important control parameter becomes the aspect ratio of the convection cell 

where I ,  is the length of the long side of a rectangular convection cell. At onset, 
assuming straight parallel rolls, an integral number of rolls must fit into 1, : n142 = l,, 
where n is the number of rolls. Thus, the critical wavevector at the onset of convection 
qc = n n / T .  For rigid boundaries the expected critical wavevector in the infinite-r 
limit is qco = n, so that 

Since rolls typically come in pairs, whenever r is an even integer, we expect rolls 
with the critical wavevector qco. However, it should be kept in mind that qe is not 
under strict experimental control. Although a variable-I' cell allows more control 
than a fixed-r cell, cryogenic convection studies cannot at this time visualize flows in 
order to directly measure qc. Without direct visualization we may strictly only talk 
about the most likely pattern scenarios, and then compare where possible against 
room temperature visualization experiments and/or calculations of the dimensionless 
heat transport or Nusselt number based on specific patterns. It is precise to say that 
we have reproducible experimental influence over qc through the variability of r .  

Ra, Pr and I' form the experimental control parameter space. We measure the 
response of the fluid to changes in these parameters through the Nusselt number 

qc = nqco/r. (1.5) 

ch (total) 

Ch(preconvective) ' 
N =  

where Ch is the thermal conductance of the fluid layer. N - 1 measures the scaled 
amount of heat carried by convective motion alone. 

1.2. Instabilities of convection rolls 
Study of RBC was relatively sparse until the 1970s which saw a rapid increase in not 
only the study of RBC but more broadly of pattern-forming systems and even more 
broadly of nonlinear dynamical systems (Cross & Hohenberg 1993). 

The initial instability of RBC is from an isotropic conduction state to an arrange- 
ment of rolls. Generally speaking, the initial roll pattern is forced by the sidewalls 
and ideally in a rectangular cell the rolls are straight, parallel and aligned with the 
short side of the cell. This means that the rolls are effectively one-dimensional, 
the roll amplitude being the only responsive variable. Past the regime of effectively 
one-dimensional straight parallel rolls lie transitions to complex temporal and spa- 
tiotemporal behaviour. In order to understand these very complicated flows, one 
would like to know how they arise: to know the full range of instabilities which 
destroy the simple one-dimensional pattern of rolls. Clever & Busse (1974, 1979, 
1987) have calculated the stability boundaries in Ra-Pr-q space of straight parallel 
rolls assuming an infinite aspect ratio. The three-dimensional region of stability of 
straight rolls is often referred to as the Busse balloon (Busse 1981). 

When experiments in large aspect ratio containers (say r - 30) take care to 
promote straight rolls, the quantitative agreement with calculations is excellent 
(Croquette 1989a, b). In small-I' cells, the measured instability boundaries are sys- 
tematically shifted up in Ra but qualitative agreement with the calculations remains. 
As Ra is raised, rolls may not remain parallel but may bend and nucleate defects. 
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FIGURE 1. Illustration of the Pr range of fluids commonly used in experiments. Of particular 
relevance is the large gap in Pr between water and liquid metals (represented by mercury) that is 
bridged by superfluid mixtures. 

Roll bending leads to mean flows on length scales the size of the container. These 
mean flows can strongly affect the stability of the roll pattern. Roll curvature ef- 
fects require additional analysis (Newell, Passot & Souli 1990) and are not taken into 
account by the infinite-r stability calculations. It is beyond our scope to go into 
further details. Any of a number of recent reviews and books summarize results 
to date, for example those by Behringer (1985), Ahlers (1989), Manneville (1990), or 
Cross & Hohenberg (1993). 

Two general types of instability occur at the boundaries of the region of roll 
stability (see figure 12) : stationary pattern changing instabilities, such as the skewed 
varicose, which act to keep the pattern within the stable band of wavenumbers; and 
time-dependent instabilities, such as the oscillatory instability. A fluid which could be 
continuously tuned to take on both of these instability types, while keeping q = qc, 
would be very useful for the study of nonlinear instabilities. 

1.3. Prandtl number gap 
To initiate the oscillatory or the skewed-varicose instability in a constant experimental 
setting, while keeping q = qc, requires a fluid with a Prandtl number tunable between 
about 0.03 and 0.7. No common fluid (figure 1) has such a range of Pr. Water, liquid 
metals, pure 3He or 4He, and all gases fall in or near this range of Pr, but do not 
cover it fully and specifically do not cover it enough to be able to change which 
instabilities occur after the onset of convection. 

To our knowledge, superfluid mixtures are the only fluids to provide a tunable 
Prandtl number of broad enough range to access the change from stationary to 
time-dependent instabilities. Figure 2 shows the Prandtl number of the dilute mixture 
used in our experiments as a function of temperature along with Pr for several other 
cryogenic fluids for comparison. Wheatley and coworkers (Warkentin et al. 1980 ; 
Haucke et al. 1981) first recognized that dilute superfluid mixtures bridge this Prandtl 
number gap. 

1.4. Buoyant instability of superfluid mixtures 

For RBC the buoyancy mechanism is well known. The fluid layer is heated from 
below; hot fluid becomes less dense than the overhead cold fluid and a density 
inversion is born, which, if large enough to overcome dissipative forces, leads to 
bulk overturning motion in the fluid. For SMC the buoyancy mechanism is more 
complex. In pure superfluid 4He it is impossible to create a thermal gradient (with 
moderate heat fluxes) and hence impossible to create a density inversion. However, 
small additions of 3He allow dilute superfluid mixtures to sustain a density inversion 
through the 'heat-flush' effect that concentrates lighter 3He atoms at the cold side of 
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FIGURE 2. The Prandtl number of several cryogenic fluids versus temperature on log-log scales. 
The solid line shows Pr for the 1.22% 3He-superfluid-4He mixture used throughout this work. 
The dashed lines show Pr reported for other mixture concentrations (Warkentin et al. 1980). For 
comparison, Pr for pure 4He is displayed; also of note is that the minimum Pr for pure 3He is 
0.5. All data are at saturated vapour pressure. We believe the maximum in Pr for the 1.46% data 
is probably an artifact of the sparse and inexact thermo-hydrodynamic data generally available 
for dilute superfluid mixtures in this temperature range. Extensive data for the 1.22% mixture are 
available from the authors or the JFM Editorial Office. 

the cell (Khalatnikov 1965). This effect creates dissipation and allows the creation of 
a thermal gradient. 

The dynamics of superfluids is expressed by the two fluid-model (Landau 1941; 
London 1954; Khalatnikov 1965). In this description, the liquid consists of two 
separate components, normal and superfluid, each with its own density pn and ps, 
and velocity vn and vs, respectively. The total mass flux is given by 

j = P n v n  + P S V S .  (1.7) 

The normal fluid is to be thought of as a conventional viscous fluid, but the superfluid 
has neither viscosity nor entropy. In the case of pure superfluid 4He, heat flow takes 
place without dissipation by ‘counterflow’. Thermal energy is carried from a source to 
a sink by a flow of normal fluid. At the sink, the normal fluid converts to superfluid 
which returns without dissipation to the source. Dissipationless counterflow enforces 
the condition Vp4 = 0. 

The addition of 3He to the superfluid 4He leads to a substantially different process. 
The 3He atoms are part of the normal fluid and participate in the thermal transport of 
energy from source to sink. But, unlike the 4He, the 3He atoms are not superfluid (at 
these temperatures) and so cannot participate in the superfluid counterflow; the heat 
flow flushes 3He to the cold side producing a gradient in the 3He mass concentration 
c. The resultant mass flux along V c  is a dissipative flow. Thus, in the absence of a 
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pressure gradient (essentially the case here), the temperature gradient V T  is linearly 
related to V c :  

The quantity k; ,  the effective thermal diffusion ratio, takes its name in analogy to the 
ordinary thermal diffusion ratio kT which appears in the diffusive impurity current 

VC = -(k;/  T ) V T .  (1.8) 

i = - p 9  (Vc + ( k T / T ) V T ) ,  (1.9) 

where i is the impurity flux of 3He atoms and 9 is the 3He mass diffusion coefficient. 
Unlike the ordinary thermal diffusion ratio k T ,  which is a transport coefficient, k; is 
a thermodynamic quantity relating changes in c and T under conditions of constant 
chemical potential p4 and pressure P : 

k; -T(i?c/aT)p,p4.  (1.10) 

NP,p4 = - P - l ( a P / W P , w  (1.11) 

Consequently, the fluid behaves as a pure fluid with an effective thermal expansion 
coefficient 

that is always negative. This means that convection is initiated by heating from above 
rather than from below. In the more general dynamical case, neither p4 nor P need 
be constant. The important criterion is whether the speed of the convective flow is 
much slower than the velocity of second sound (a propagating thermal mode of the 
superfluid equations). As this is almost always the case for superfluid convection, the 
condition that p4 be constant is typically satisfied. 

To the extent that (1.8) is a good approximation, c is slaved to T .  This slaving is 
the reason that superfluid mixtures convect analogously to single-component fluids, 
rather than as binary mixtures. If c and T are slaved, there is effectively only one 
scalar field in the problem. Of course, the full dynamical equations of SMC differ 
from ordinary RBC. For instance, the appropriate mass current is given by (1.7) 
with the consequence that for incompressible flow V - u ,  # 0. Superfluids also have 
extra dissipative processes characterized by several generalized viscosity coefficients 
(second viscosities) which have no analogue in RBC. These effects, though, in most 
instances turn out to be small and can be considered as superfluid perturbations to 
RBC. Section 3 examines in some detail the effects of additional superfluid terms in 
(1.8). 

2. Experimental apparatus and techniques 
The goals of this work are to assess the extent of the analogy between RBC and 

SMC and to survey convective instabilities in the Ra - Pr - r parameter space. 
The central tool used to accomplish these goals is the variable-height convection cell 
and accompanying cryogenic system described in this section. The unique feature 
of this apparatus is that it allows us to continuously vary the height (and hence 
aspect ratio) of the fluid layer while the rest of the apparatus and sample fluid remain 
unchanged and at low temperature. The cryostat is similar in principle to that used by 
Gao et al. (1987) to study convection in non-superfluid 4He and 3He-4He mixtures. 
However, the use of superfluid mixtures required an entirely new apparatus (in order 
to heat from above). Metcalfe (199 1) has additional experimental details. 

The chief reason for using cryogenic techniques is to take advantage of the 
unique Pr range of dilute superfluid mixtures. Beyond this, the cryogenic envi- 
ronment offers other benefits to convection research, as described in more detail 
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by Ahlers (1974), Ahlers (1975) and by Behringer (1985). Temperature measure- 
ments with very high stability and resolution are possible. For the measurement of 
heat flow and temperature gradients, it is standard to resolve temperature changes 
ATIT - The cryogenic environment is unmatched for detecting time-varying 
thermal signals. This is due to the large ratio of the heat capacities of cryogenic fluids 
to the metal bounding plates. The heat capacity ratio for equal volumes of fluid and 
copper is - lo3 for liquid helium, - 1 for water, and - low2 for pressurized room 
temperature gases. Consequently, cryogenic experiments are unmatched at identifying 
time-dependence in thermal signals. 

The disadvantage of liquid helium experiments is the difficulty of imaging the flow 
patterns, although the advantages of precision and versatility can be exploited to pro- 
vide extensive information on convective flows. Behringer’s (1985) review particularly 
emphasizes results obtained from cryogenic convection studies. In addition, Sullivan, 
Ecke & Steinberg (1991) have recently calculated that shadowgraph techniques should 
have adequate sensitivity to visualize the convective flows in superfluid mixtures. 

2.1. Cooling and cryostats 
The cryogenic part of the apparatus is sealed inside an evacuated can and immersed 
in liquid helium at 4.2 K. Cooling below 4.2 K is provided by two helium evaporation 
refrigerators. The first is a continuously operating 4He refrigerator (Delong, Symko 
& Wheatley 1971). The second recirculates 3He in a closed cycle. Each refrigerator’s 
liquid capacity is about 8 cm3. The minimum loaded temperature with these refriger- 
ators is = 0.8 K. For temperatures below = 1.3 K, the 4He refrigerator’s function is 
to condense returning 3He gas. Below the 3He refrigerator is an isothermal platform, 
intended as a buffer between the refrigerators and sample chamber, and below that 
the combined sample chamber and convection cell. 

The refrigerators, the isothermal platform, and the sample chamber are connected 
serially by heat leaks that are chosen to extract the heat injected to drive convection 
without directly linking the refrigerators to the convection cell. This design allows us 
to easily change the temperature To at the bottom of the convection layer without 
adjusting the refrigerators. To is regulated by changing the voltage across resistive 
heaters on the sample chamber and isothermal platform. In practice, applying regu- 
lating heat only to the isothermal platform provided superior temperature regulation 
at the sample chamber. 

2.2. Sample chamber, convection cell, and piston 
The heart of the apparatus consists of the sample chamber, convection cell, and 
height-changing piston (figure 3). The sample chamber provides a liquid reservoir 
and a large thermal mass at the constant-temperature side of the convection layer. It 
consists of two copper cylinders indium-sealed together. The entire vessel is 2.86 cm 
tall with a 6.99 cm diameter. The interior of the sample chamber is honeycombed 
with a large number of holes, producing a net interior volume of about 10 cm3. 

The convection cell is mechanically and thermally connected directly to the top of 
the sample chamber. The convection cell has a rectangular cross-section of length 
1, = 2.284 cm and width ly = 1.013 cm, giving a cross-sectional area of 2.314 cm2. 
The sidewalls are a stainless steel rectangular tube of wall thickness 0.264 mm, giving 
a wall cross-sectional area of 0.1771 cm2. This tube is soldered at each end to annular 
copper blocks which surround the tube. An additional copper block which forms 
the top plate of the convection apparatus fits inside the stainless steel tube and is 
secured with screws and epoxy to the upper annular copper block. This construction 
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FIGURE 3. Sketch of the sample chamber and convection cell (not to size); and the schematic 
location of heaters and thermometers. The height-changing piston is drawn with a dotted line. 
For clarity the middle stage of the cell cage, the thermal anchoring clamps, and the top variable 
capacitor are not pictured. 

is used to guarantee that there are no temperature gradients between the sidewalls 
and the upper boundary of the fluid at their juncture. The lower annular copper 
block is indium-sealed to the top of the sample reservoir. The top and bottom copper 
confining plates are polished to a reflecting finish. Both plates are flat to a few 
wavelengths, as measured by an optical flat and a sodium vapour light source. The 
upper plate is fixed in position while the lower plate is the top of a piston. The piston 
fits snugly against the sidewalls with a mean gap between the walls and the piston that 
we estimate to be about 10 pm. The space between the upper surface of the piston 
and the upper bounding plate forms the convection region. Sample fluid enters the 
convection region by welling up from the sample chamber through the gap between 
the sidewalls and piston head. The convection cell height d is continuously adjustable 
from 1.006 cm to 0 (top and bottom plates touching) by varying the position of the 
piston in the cell. The shaft of the bottom plate piston passes completely through the 
sample chamber. A beryllium copper bellows is soft soldered to the bottom of the 
sample chamber. 

The final feature of the sample chamber/convection cell is a small fluid reservoir 
located a few centimetres above the top of the convection cell. The reservoir is 
also honeycombed internally with many small holes. In operation, the liquid-vapour 
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interface sits within the reservoir to ensure that fluid in the convection cell is at 
saturated vapour pressure. The 2 crd reservoir is connected to the sample chamber 
by a 1.6 mm 0.d. copper capillary; the reservoir is at the sample chamber temperature. 
A 1.6 mm 0.d. x 0.25 mm wall stainless steel capillary leads from the reservoir to the 
sample tanks outside the dewar. 

Note two important features in the construction of the sample chamber/convection 
cell: (i) the convection layer can be heated from above, as required by the negative 
thermal expansion coefficient; and (ii) the movable piston allows in situ change of the 
height of the convection cell. 

2.3. Preparation and analysis of the mixture 

Sample mixture fills the sample chamber, bellows, and convection cell, as well as 
partially filling the fluid reservoir. The total sample volume is about 25 cm3, which 
is filled with a little over 0.9 moles of dilute 3He-4He mixture. The 3He-4He mixture 
was prepared by combining pure 4He and 3He gas at room temperature and then 
condensing the gas into the sample chamber at low temperatures. A mole count 
of the helium gases gives the mole fraction of the mixture as X = 0.0122. 7'2 for 
the mixture was found to be 2.1554 K, which implies a mole fraction X = 0.0120. 
These independent measures substantially agree and we take the mole fraction of our 
mixture to be X = 0.0122 (mass fraction c = 0.00922). 

2.4. Changing the cell height 

The height of the cell is changed while at helium temperatures by turning a finely 
pitched screw on top of the dewar that in turn pushes or pulls the piston whose 
head is the bottom plate of the convection cell. The screw is attached to a stainless 
steel tube running from the top of the cryostat through the liquid helium bath to a 
bellows seal at the top of the vacuum can. This bellows mechanically links another 
stainless steel tube running though the vacuum can to a 'cage' around the sample 
chamber/convection cell assembly (figure 3). The cage is rigid and consists of three 
copper stages connected by copper posts; the stages each have differently shaped 
central cutouts. (For clarity the middle stage of the cage is not pictured in figure 3.) 
The copper cage stays at the sample chamber temperature. The piston and cage 
move rigidly through the action of the pushrod compressing (expanding) the bellows 
to decrease (increase) the cell height. Friction holds the piston in place. The height is 
easy to change but once set is very stable. 

The mechanical structure of the cage serves two purposes. First, a direct me- 
chanical (and hence thermal) connection of the pushrod to the convection cell is 
undesirable. Consequently, the top of the cage is a clutch mechanism. When taking 
measurements, the pushrod is physically (and thermally) disconnected from the sam- 
ple chamber/convection cell. The clutch is engaged only when actually changing the 
height. Second, there are spring-loaded clamps mounted on the middle stage that 
press snugly against the outside of the stainless steel wall at a level which is nearly at, 
but slightly below, the upper surface of the piston. These pieces help thermally anchor 
the bottom outer part of the stainless steel wall at the sample chamber temperature 
and also help keep the piston from slipping when the clutch is disengaged. The clamps 
travel with the cage and so keep level with the bottom plate through all changes of 
cell height. Two sets of capacitor plates are attached to the cage and sample chamber. 
These capacitors yield a precise measurement of the cell height. 
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2.5. Measurement electronics and calibrations 

As discussed in $1.1, our experiment measures the Nusselt number as a function of 
the three control parameters Ra, Pr, r and time, so there are four measurement and 
control systems: 

(a )  The heat flux Q injected into the top plate sets AT and Ra. 
(b )  The temperature at the bottom plate of the cell To sets Pr. 
( c )  The temperature difference across the fluid layer AT and Q yield N .  
( d )  The height of the cell d gives r .  
A multimeter measures Q, which is generated by resistive heating at the top plate of 

the convection cell. Five-lead AC bridge techniques measure temperatures using ger- 
manium resistive thermometry (Behringer & Ahlers 1982). Similar bridge techniques 
with three leads measure the cell height d using variable capacitors (Gao et al. 1987); 
d is also obtained from the conductance of the fluid layer. The balancing arm of the 
bridge is an inductive ratio transformer; a lockin amplifier serves as the null meter. 
Figure 3 shows thermometer and heater locations. 

The heat flux Q is provided by two 5 kC2 non-inductively wound wire resistors ( H Q ~  
and He2 in figure 3 )  connected in parallel and varnished to the upper plate of the 
convection cell. A four-lead method allows the simultaneous measurement of both 
the DC current and the voltage across the top plate heater. 

To maintain the temperature at the bottom plate of the cell and throughout the 
sample volume, we use an AC resistance bridge with a germanium thermometer (T,)  
paired with a 10 kQ standard resistor (SrIo). The output from this bridge is fed back 
through a temperature controller that supplies a voltage to one of several heaters. 
The heater most frequently used is a 5 kC2 resistor (HI) on the isothermal platform. 
In addition there are two 5 kC2 heaters directly on the sample chamber, but heating 
at the isothermal platform gave better stability and less noise. The thermometer 
bridge ratio was calibrated against both the 3He T62 and 4He T s ~  vapour pressure 
temperature scales. The vapour pressure was measured using a Texas Instruments 
Bourdon capsule pressure gauge, which in turn was calibrated against mercury and 
oil manometers. 

To measure AT,  we use a differential AC bridge with germanium thermometers 
embedded in the top plate and in the bottom plate of the convection cell. The top 
plate thermometer Tt fits in a hole drilled into the centre of the top copper block. 
The bottom plate thermometer Tb is mounted on a long copper rod screwed into the 
centre of the height-changing piston, making good thermal contact near the upper 
part of the piston, and ensuring negligible temperature gradients between the bottom 
of the convection space and the thermometer. The temperature resolution AT is 
about 0.3 pK with temperature differences at the onset of convection ATc ranging 
from 0.3 to 10 mK; hence, 3 x 

The measured AT is not due to the fluid alone. Sidewall conductance, self-heating 
of the top plate thermometer, changes in rceff across the layer for very large AT,  and 
Kapitza (boundary) resistance all contribute to the measured temperature difference 
across the fluid layer. We have ignored the effect of the Kapitza resistance, which 
should be negligible for T > 0.8 K (Pollack 1969). The other corrections have been 
directly and precisely measured. In the worst case, corrections amount to 20% of the 
total AT across the layer and account typically for less than 10%. 

To measure the layer height, we use two independent techniques. In the first, we 
use an AC differential bridge with two variable capacitors. The capacitor plates are 
polished copper disks 1 cm in diameter that are epoxied into a copper holder. The 

< AT/AT,  d lop3. 
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FIGURE 4. Block diagram for computer-controlled data acquisition. An AT-PC controls the heat 
flux with a 12-bit digital-to-analogue board and monitors several instruments on a GPI bus. A 
multimeter reports the heat flux at the top of the cell. The lockin amplifier reports the resulting 
AT. Lockin output is also displayed on a chart recorder. 

bottom plate of the top capacitor C, and the top plate of the bottom capacitor cb 
are fixed in position on the sample chamber. The top plate of C, moves with the 
cell stage, and the bottom plate of cb moves with the bottom stage. When d is 
decreased, the distance between the plates of cb decreases, while that between the 
plates of Ct increases by the same amount. The capacitance bridge ratio is calibrated 
against d at room temperature using a cathetometer and a machinist’s levelling gauge. 
The fully closed position provides a convenient reference point. There is less than a 
4% constant shift in the calibration after cooling to low temperatures. The bridge 
measurements of the cell height are accurate to about 5 parts in lo4, or a little better 
then 10 pm. We have a comparable measurement of the length I ,  of the cell. Taking 
into account the accuracy of both I ,  and d ,  we know r to better than 1% for d above 
0.5 mm and to 2.5% for d as small as 0.2 mm, which is the shortest height used in this 
work. The longest time spent at any single height was 4 months at d = 0.2855 cm. 
Over this time the capacitance bridge ratio shifted by less than 10 p.p.m., implying a 
similar stability in d. 

Another way to measure the cell height is to measure the thermal conductance Ch 
of the layer. More specifically, very precise ratios of heights are obtained from ratios 
of conductances at fixed temperature. If the effective conductivity is ‘ceff and AT 
is the temperature difference across the layer in response to a heat flux Q, then the 
resistance is defined as 

(2.1) 
Because it is proportional to d,  Q provides a convenient way to check the capaci- 
tative calibration in situ. SZ also contains a Kapitza resistance component, which is 
independent of the height. In practice, this term is only important when d is small, 
in which event we use the capacitive technique to determine the height. At a fixed 
temperature the ratio of any two cell heights is 

R = A T / Q  = d / K , f f .  

d i  1 4  = Q1 la2 ; (2.2) 

d itself is obtained from this procedure by using a seed height from the calibration. 

2.6. Automated data acquisition 
Data acquisition for these experiments is fully controlled by a computer, which can 
take data unattended for days at a time. The computer uses a 12 bit digital-to-analogue 
board to supply and control voltage to the top plate heater and also supervises a 
lockin amplifier, programmable ratio transformer, and multimeter through a GPI bus. 
The programmability allows more versatile and sophisticated data-taking automation 
than was feasible in previous experiments (Gao et al. 1987). Figure 4 shows a block 
diagram of the computer-controlled data-taking system. 
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To take data we first fix To and d.  Then the heat flux Q applied to the top plate 
of the cell is raised to some convenient starting value and control turned over to the 
computer. The data taken are either in the form of time series at a fixed heat flux or 
Nusselt curves ( N  vs. AT) for incrementally increasing heat flux. 

For Nusselt curves we apply a steady Q to the top plate of the cell, and, after 
allowing a sufficient relaxation time, the resulting AT is measured by taking a 
100-point time series with At = 1 s. These 100 values are averaged to produce 
AT for the point. Q is then raised a pre-set amount, and the procedure repeated 
to acquire another point. The fluid thermal relaxation time depends on both the 
mean temperature and the height of the layer. Usually waiting 5-10 vertical thermal 
diffusion times is more than sufficient to ensure the data point represents a fully 
relaxed fluid layer. But to guarantee relaxation, the control software waits a pre-set 
amount of time and then takes a trial 100-point time series. The software fits a 
straight line to these trial points, and, if the slope of the line is close enough to zero, 
it accepts the average of the trial points. If the slope is too big, new trial points are 
acquired - over and over again until the fluid is fully relaxed. 

3. Theory and measurements for the onset of convection 
The equations of motion for SMC resemble the Boussinesq equations for RBC 

but with additional terms from superfluid effects. To the extent that the superfluid 
effects are small, SMC should behave like standard RBC. The onset of convection is 
currently the only point at which to rigorously measure superfluid deviations from 
classical RBC behaviour because there is no analysis of the nonlinear states of SMC 
above onset. It is only through the linear stability problem for the critical Rayleigh 
number and critical wavevector that we can combine analysis and experiment to 
interpret and quantify superfluid effects. 

Parshin (1969) made an early analysis of the linear stability problem by assuming 
that c and T were completely coupled. More specifically, he assumed that p4 and 
P were constant and that V u, = 0. This is the zeroth-order approach to this 
problem and leads to a critical Rayleigh number that is the same as that classi- 
cally calculated (Ra, = 1708), but with several hydrodynamic quantities, such as 
the thermal diffusivity, redefined to reflect superfluid qualities. Steinberg (1981a, b) 
and Fetter (1982a, b) have formulated the SMC onset problem allowing deviations 
in p4 and V * u,. Steinberg (1981a, b) casts the SMC linearized equations of motion 
in variables of velocity and entropy with free-free boundary conditions, and solves 
for Ra, in two limiting cases. Fetter (1982a, b) casts the SMC linearized equations 
of motion in variables of velocity, temperature and pressure with rigid boundary 
conditions, and solves for Ra, approximately by treating the superfluid terms as 
perturbations. Metcalfe & Behringer (1993) have extended the analysis to facilitate 
direct experimental comparison and also to calculate the SMC critical wavevec- 
tor. There is no a priori justification for considering superfluid terms to be small: 
the circumstances of the validity of this assumption must be determined by exper- 
iment. In this section we first discuss the linear stability analysis of SMC, then 
present the measurements of the superfluid effects, and finally make comparisons to 
theory. 

3.1. Linear stability analysis 
The SMC equations of motion are approximations of Khalatnikov’s (1965) hydro- 
dynamic equations of motion for 3He-superfluid-4He mixtures, just as the Boussi- 
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nesq equations are approximations of the Navier-Stokes equations. After non- 
dimensionalizing and linearizing the equations of motion about the pre-convective 
steady state, we arrive at the following set of equations describing the stability of 
a laterally infinite layer of dilute superfluid mixture subjected to a destabilizing 
temperature gradient (Fetter 1982a, b):  

( 3 . 1 ~ )  

R U - ~ V ~ T  - vnZ = 0, (3 . lb)  

v * v,  - €2V,, = 0. ( 3 . 1 ~ )  

As in the classical problem, v,, T, and P are perturbations on the pre-convective 
steady-state solutions of (normal fluid) velocity, temperature and pressure, and we 
seek to know whether eigenfunctions of (3.1) will grow or decay. 

The ei quantify the superfluid effects. Except for the terms involving the ei, (3.1) are 
the linearized equations for the onset of RBC. (Compare for example equations 55-57 
of Chandrasekhar 1961.) The ei are defined by 

Variables superscripted with 0's are the linear, steady solutions, and 

( 3 . 2 ~ )  

(3.2b) 

(3 .2~)  

Each ei represents a distinct physical effect (Fetter 1982a, b) :  €1 counterflow ad- 
vection (the el& term) augments heat conduction; €2 volume changes equivalent 
to compressibility effects are allowed in v ,  ( 3 . 1 ~ )  even though V - j  = 0 ($1.4); €3 

superfluid dissipation processes (51,~ are second viscosity coefficients) that have no 
comparable analogue in RBC. As there are no direct measurements of - p53, €3 

is poorly known. Unfortunately, the product € 2 ~ 3  is the crucial quantity determining 
the size of superfluid effects. This is why we must measure the size of superfluid 
corrections. 

Assuming the ei to be small parameters, Fetter (1982a, b) has carried out a per- 
turbation solution of (3.1) to find Ra,. However, a solution in terms of the ei does 
not offer much guidance as to how to measure superfluid effects in an experiment. 
Metcalfe & Behringer (1993) have reformulated and extended the perturbation anal- 
ysis to use the inverse layer height d-' as the small parameter. They have shown 
that only even powers of d-' are needed and have calculated Ra, and q,, the critical 
wavevector. The expansion result for Ra, is 

RaclRaco = 1 + P3 (101d)2 + (p3 + p4)&, (1,/d)4 + o(d-6),  (3.4) 

where Ra,, = 1707.7 ... is the critical Rayleigh number for RBC; p3 and p4 are 
wavevector-dependent functions with p3 5 20 and p4 - for q = 3.114; and 1, is 
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a characteristic length scale defined as 
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Superfluid effects shift Ra, > Ra,,, but these effects will be small when d+2,. This 
analysis makes it transparent that superfluid effects can be directly measured through 
the change in Ra, as d is varied. 

The 0(dp2, )  coefficient grows as Ra;;'. 
For this reason the truncated series expansion does not accurately predict Ra, for 
I,/d 2 5 x lop2. Equation (3.4) does, though, correctly predict the dominant superfluid 
effect, which is embodied in the term € 2 ~ 3  = Ra,,(2,/d)2. The deficiencies of the series 
solution may be remedied and also more insight into the physics afforded by analysis 
of a simplified version of (3.1) that contains only the leading-order superfluid effect. 

However, (3.4) is a divergent series. 

First combine (3.1) into a single equation for u,,, namely 

(82 - q2)3vnz - q22,(82- q2)unz - (€1€2)(d2 - q2)82u,, 

+(Q - el)(d2 - q2)  [q2d - d3] u,, = -q2Rau,, (3.6) 

where Z; = [el(p/p,) - c3] € 2  contains the leading superfluid term €263. The first terms 
on the left- and the right-hand sides of (3.6) are classical (Chandrasekhar 1961), 
equation 198. The second term of the left-hand side is even in z, while the fourth 
term is odd. Since u, must be even to obtain the lowest value of Ra,, we drop the 
odd term. In any event, terms involving €1 and €2 alone, without €3, are small for the 
current experimental conditions. Also, we neglect counterflow advection by setting 
€1 = 0. A careful analysis (Metcalfe & Behringer 1993) shows that each of these 
approximations are accurate to at least 1 YO for the concentrations and temperatures 
of the present experiments. These two simplifications have the effect of removing all 
non-Hermitian terms from (3. l), leaving the approximate equation 

(3.7) 

(3.8) 

Substituting the ansatz v,, = A,  cos(b,z) + A  cosh(bz) +A* cosh(b*z) into (3.7) leads 

(a2  - q2)3~,,  + 4 2 €2€3(d2 - q2)u,, = -q2Rv,, 

v,, = au,, = (a2 - q ) u,, = 0 

which is exactly solvable. The boundary conditions for (3.7) are 
2 2  

for z = +1/2, which are appropriate for rigid boundaries. 

to the transcendental equation 

= -Db, tan(bo/2), (3.9) 

as the compatibility condition for the solution of (3.7). The quantities fib,, f (b l  fibz) 
are the roots of the characteristic equation 

(b2 - 42)3 + q2e2€3(b2 - q 2 )  + q2R = 0. (3.10) 

Solutions of (3.9) implicitly relate (for a given € 2 ~ 3 )  Ra and q and map out the 
marginal stability curve Ra(q). In the limit € 2 ~ 3  + 0, (3.9) recovers the RBC result 
(Chandrasekhar 1961, equation 216, chap. 11). Figure 5 shows Ra, and q, as a function 
of ( A 0 / d )  from the simplified model (3.9) and from the first two terms of the expansion 
(3.4). This figure demonstrates that the effects of the superfluid corrections on both 
R, and q, are minimal for i o / d  < 0.1. In the limit that €263 becomes large (large 2,/d), 

(b2$ + blD) sinh(b1) + (bl$ - b2D) sinh(b2) 
cosh(b1) + cos(b2) 
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FIGURE 5. Ra, and q, from the simplified model (solid line) and from the first two terms of the 
expansion (dashed line) as functions of Ao/d .  Ra, and q, are on linear scales; Ao/d is on a log,, 
scale. The insets both have linear-linear scales. For A,/d large enough the only solution is q = 0. 
The dotted lines mark Race and qco. 

the only solution of (3.9) is q = 0: Ra, is elevated and qc depressed. The dominant 
superfluid effect increases the roll wavelength, inhibiting convection. The result for 
q,, in particular, is important for large aspect ratios, which are typically achieved by 
making d small. We note that previous theoretical work only considered the effect of 
the superfluid terms on Ra,. 

Until they are very large, superfluid effects only shift the values of Ra, and qc from 
their classical values. Other features of RBC are unaffected, for instance the shape 
of the marginal stability curve. Figure 6 shows as solid lines the marginal stability 
curves for I , / d  = 0 and curve with the 
constant shift in Ra, subtracted out, while the dotted line shows the same curve with 
both the constant Ra, and qc shifts subtracted. The dotted line is hard to see as it 
overlays the classical curve except at extreme values of q. In particular, figure 6 shows 
that the curvature of Ra(q) in the vicinity of Ra, is unaltered by superfluid effects. In 
the highly successful amplitude formalism describing (weakly) nonlinear convection, 
one of the chief parameters is the correlation length, which is the curvature of Ra(q) 
at Ra, Cross (1980). While the amplitude equations describing SMC are currently 
underived, they should be similar to those describing RBC. 

The above analysis shows that, to a good approximation, all superfluid effects are 

the dashed line shows the I , / d  = 
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FIGURE 6. Ra(q) for the indicated values of &Id. The dashed line is the data 
the shift in Ra, subtracted out. The dotted line, which almost perfectly overlaj 
is the dashed line with the shifts in Ra, and qc subtracted. 

1730 

Ra 
1720 

1710 

1700 
2.8 3.0 3.2 3.4 

4 
FIGURE 6. Ra(q) for the indicated values of &Id. The dashed line is the data for I , / d  = 0.01 with 
the shift in Ra, subtracted out. The dotted line, which almost perfectly overlays the I , / d  = 0 curve, 
is the dashed line with the shifts in Ra, and qc subtracted. 

for I , / d  = 0.01 with 
I S  the I , / d  = 0 curve, 

contained in the length scale A,, which can be measured through its effect on the 
critical Rayleigh number Ra, as the cell height is varied. 

3.2. Measurement of the superfluid effects 
The raw data of these experiments are converted to Nusselt curves, the function 
N(Ra).  Figure 7 shows representative Nusselt data for a range of temperatures and 
for aspect ratios r = 14. At Ra,, N should change from N = 1 to 

N = l + & + . . . ,  (3.11) 

where 
E = (Ra - Ra,)/Ra,. (3.12) 

The point at which N rises above unity determines AT, which is crucial to our 
analysis for the superfluid corrections. The sharpness of the change in dN/d(Ra) at 
Ra, usually provides insight into geometric imperfections, i.e. a rounded transition 
may signify non-uniformities in d. The parameter S provides information on the 
convective amplitude. Well above onset N(Ra)  provides a signature for changes of 
the convective pattern or state. 

In determining N we use the corrected (cf. the discussion in $2.5) heat flux Q 
and AT to determine the overall effective thermal conductivity, which depends only 
on the fluid properties and the state of the fluid (i.e. convecting or not). We then 
normalize this result by the value for the effective conductivity well below the onset 
of convection. 

The data for N(Ra)  follow horizontal straight lines below Ra,. After onset there is 
a short region in Ra with a slight linear rise, followed sharply by another linear rise 
with much greater slope where convection has clearly set in. In order to empirically 
capture this feature and obtain as unbiased a determination of AT, as possible, we 
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FIGURE 7. Data for N - 1 versus F = (Ru-RR~,) /Ru,  for five temperatures spanning the temperature 
range covered by the present experiments. These data were obtained for essentially the same height 
(d = 0.1633 cm, within 0.0083 cm). 

first select points clearly below onset and fit them to a straight line to account for 
the weak temperature-dependence of the thermal conductance. The shape of the 
data immediately above onset suggests an appropriate fitting function is one that 
interpolates between two straight lines, for instance 

N(AT)  = a1 + a2(AT - a4) + a3(AT - u4) tanh[(AT - a4)/as]. (3.13) 

For small AT (3.13) is a straight line. For large AT (3.13) is again a straight line; us 
gives the width of the crossover region between the two lines. The other parameters 
combine to give the slopes and intercepts of the straight line segments. With five 
adjustable parameters, the fit is always good. Similar functions were tried but did no 
better job of fitting the data. Obtaining AT, in the presence of a rounded transition 
is frequently encountered and slightly different strategies are in use. Ahlers (1974), 
Haucke et al. (1981) and Gao et al. (1987) fit straight lines to the data well above 
and well below the rounded region with the intersection of the lines determining 
AT,. This involves a four-parameter fit plus two other parameters which estimate 
the boundaries of the rounded region. We also fit the data in this manner. AT, 
determined by the two methods may differ by at most a few percent. Finding the zero 
of the function N(AT) - 1 experimentally defines the critical temperature difference 
AT,. 

for 
a number of temperatures. Ra,(d)/Ru,, is derived from AT, in the following way. At 
each mean temperature, we make a linear fit of d3AT, to 

d3ATc = A + B L 2 ,  (3.14) 

where A and B are the fit coefficients. The data for small at T = 1.050 correspond 
to very low aspect ratios where the effect of the sidewalls elevates the critical Rayleigh 

Figure 8 shows the results of extensive measurements of Ra,(d)/Ra,, versus 

as suggested by (3.4): 
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FIGURE 8. Data for Ra,/Ra,, versus d-*, the inverse square of the layer height. The mean 
temperature of each data set is indicated. 

number; we do not include these data in the fits. Ra,(d)/Ra,, is operationally obtained 
from (3.14) through normalization by A. This is more accurate than constructing Ra, 
directly because none of the fluid parameters comprising Rae are as well measured 
as d and AT,, With this normalization uncertainties from the fluid parameters are 
removed. The solid lines in figure 8 are fits of (3.14) to the data; error bars show the 
statistical uncertainties. The quality of the fits in figure 8 is good. Use of the quartic 
terms does not significantly improve the fits, and 1, is obtained as 

I: = (B/A)p,' (3.15) 

by comparing (3.14) with the first term of (3.4). The superfluid characteristic length 
scale I ,  is shown versus temperature in figure 9. 

That higher-order terms are not needed to fit the data may seem somewhat 
surprising. The experimental values of & / d  range from 0.02 to 0.3, and for 1,/d = 0.1 
the ratio of the 0 ( d - 4 )  term to the 0(d-2) term is 17. The fourth-order term should 
make a significant contribution. That this is not the case is another indication that 
the series solution (3.4) cannot be used for quantitative comparisons, except for very 
small I,/d. 

It is noteworthy that I ,  drops with increasing temperature. This implies that SMC 
more closely approximates RBC for fixed d as To increases. However, this does not 
imply that we can reduce superfluid effects at onset to arbitrarily small levels by 
operating at higher temperatures. Experimentally, AT, (shown versus temperature for 
a fixed height in figure 10) decreases very rapidly with increasing temperature. Thus, 
while the intrinsic size of superfluid effects at onset may be shrinking, experimentally, 
they become more important because d must be decreased to boost AT, to a resolvable 
level. Ever smaller superfluid terms, though, could be obtained by using thermometry 
with ever better resolution (Ahlers & Duncan 1988; Lipa & Chui 1987). 
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FIGURE 9. The superfluid characteristic length scale 1, versus temperature. 
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FIGURE 10. Values of the critical temperature difference for the single height d = 0.1633 cm. 

3.3. Comparison of theory and experiment 
Both the simplified model and the expansion (in the range of helium parameters 
considered here) predict that there is only one relevant parameter, the length scale 
lo, associated with superfluid deviations of SMC from RBC. Thus, at each mean 
temperature, scaling d by 1, should collapse all the measurements of Ra,(d)/Ra,, 
onto a single curve. We test this idea in figure 11. The data are the solid symbols; the 
solid line shows the expansion result to O(d-'); the dashed line shows the expansion 
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FIGURE 11. Ra, versus 1,/d on log-linear scales comparing theory and experimental. When d is 
scaled by 1, the data (solid points) fall onto a universal curve independent of the temperature, 
which is indicated for each data set. The dotted line shows the exact solution of the simplified 
model; the solid line shows the first term of the expansion; and the dashed line shows the first two 
terms of the expansion. Open symbols are the data with 1, uniformly reduced by 10%. 

result to O ( t 4 ) ;  and the dotted line shows the exact solution of the simplified model. 
We also plot the data using values of 1, uniformly decreased by less than 10% (open 
symbols). This shift, which is within the error bars for A,, brings the simplified model 
into essentially perfect agreement with the data except at the lowest values of Ao/d  
where Ra, is elevated by small aspect ratio effects. 

3.4. Some comments on the physical interpretation of lo 
We conclude this section with some comments on the physical interpretation of 1,. 
Before the onset of convection, the deviations of the steady-state concentration and 
temperature from the equilibrium values c, and To are linear functions of z which 
are linked by 

-YC 

T 
c - c, = -( T - To). 

The resulting buoyancy force per unit volume is 

(3.16) 
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which when combined with (3.16) yields a force F b  = pgPap,M(T - To) with an 
effective expansion coefficient ap,M = < O t ,  Fb is directed 
in the -2-direction when T exceeds the reference temperature. 

When convection begins, neglecting squared velocity terms, (3.16) acquires a new 
term to become 

- (yc/T)B,. Since 

The resulting new term in the buoyancy force is 

(3.18) 

(3.19) 

Non-dimensionalizing and putting Fd in terms of the ei gives the drag force 

Fd = 2€2€3V,, .  (3.20) 

We refer to Fd as a drag force because, owing to superfluid dissipation, this leading- 
order superfluid effect reduces the buoyancy over a length lo. The width of a roll 
is (at qco) approximately d,  and the length lo could indicate the range of superfluid 
interaction between up- and down-welling flows. The most important thing to notice 
is that whenever the cell height &A,, the superfluid effects will be negligible. This 
implies that there is a broad range of operating temperatures for which SMC, at least 
at onset, is a close analogue to RBC. 

4. Secondary instabilities 
When i o / d  is small, it is likely that the nonlinear states of SMC also closely 

approximate the nonlinear states of RBC. However, because there are no calculations 
of the nonlinear effects of the superfluid terms in (3.1), this assumption cannot be 
rigorously tested, as it has been near onset. Corroborating evidence is possible, 
though, through comparison of the measured location and type of SMC nonlinear 
roll instabilities to predictions from RBC calculations. 

Extensive calculations of the instabilities of straight parallel convection rolls have 
been carried out by Busse & Clever (Clever & Busse 1974; Busse & Clever 1979; 
Bolton, Busse & Clever 1986). For a horizontally infinite layer of fluid and for 
various Ra and Pr, these authors compute steady solutions of straight parallel rolls 
at a given wavevector and then examine the linear stability of the roll solutions. 
Various types of destabilizing modes and their location in Ra-Pr-q space have been 
identified in this way. Figure 12 shows several slices at constant values of Pr from 
this space showing the stability boundaries for the oscillatory instability and skewed- 
varicose instability, which are the relevant instabilities for Pr < 1. At the oscillatory 
instability, a wavy disturbance undulates perpendicularly to the roll wavevector with 
a single frequency. We note several experimental studies of the oscillatory insta- 
bility Libchaber, Fauve & Laroche (1983), Chiffaudel, Perrin & Fuave (1989), and in 
particular recent experiments by Ecke and coworkers (Ecke et al. 1986; Deissler, 
Ecke & Haucke 1987; Mainieri, Sullivan & Ecke 1989) using superfluid mixtures 
in a small aspect ratio container. At the skewed-varicose instability a bending 
disturbance initiates roll distortion, and in experiments leads to roll annihilation 

t An extensive tabulation of fluid parameters for dilute superfluid mixtures is available on request 
from the authors or the JFM Editorial Office. 
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FIGURE 12. Constant Prandtl number cuts, after Clever & Busse (1974), Clever & Busse (1978) 
and Busse & Clever (1979), from the Busse balloon showing instability boundaries as functions of 
Rayleigh number and wavevector. Prandtl numbers for each cut are indicated. Inside the lines 
straight rolls are stable, as indicated by the shaded region in (a). The labelled instabilities are 
Eckhaus (EI), zig-zag (ZZI), knot (KI), skewed-varicose (SVI), and oscillatory (01). The thin line 
extending up from the a-axis shows the path for CI = ac. In our notation a = q.  The dashed lines in 
each figure show the Pr-independent linear instability of the conducting state. 
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FIGURE 13. Lines show the stability boundaries for the oscillatory and skewed-varicose instabilities 
as computed by Clever & Busse (1974, 1978, 1979) for wavevectors q = 3.117 (solid) and q = 2.2 
(dashed). Symbols show data for comparison. Open symbols indicate transitions from steady to 
steady convection; solid symbols indicate transitions from steady to time-dependent convection : 0, 
r = 8.0; 0, 4.0; A, 6.0. 0; data of Maeno et al. (1985) taken in a r = 1 cylindrical cell. 

and the reduction of the wavevector back into the stable band; however, roll an- 
nihilation is a nonlinear process not accessible to the stability calculations and is 
not entirely understood (Newell et al. 1990). There have been several studies 
of the skewed-varicose instability using argon gas and (non-superfluid) liquid 4He 
(Croquette 1989a, b ;  Motsay, Anderson & Behringer 1988). There is no previous work 
on the skewed-varicose instability in SMC. 

The skewed-varicose instability and oscillatory instability boundaries in figure 12 
nominally cross at a codimension-2 point that depends on the Prandtl number and 
the wavevector of the initial roll pattern. In the neighborhood of this point there is a 
large variety of unexpected behaviour that we will examine in Part 2. The calculations 
in figure 13 show the instability boundaries as a function of Pr for q = 3.117 (solid 
line) and q = 2.2 (dashed line). The symbols show the data discussed below. The 
predicted Pr for the crossing point for q = qco = 3.117 is Pr w 0.06, but for q = 2.2 the 
predicted crossing point moves an order of magnitude to Pr w 0.8, i.e. the predicted 
location of the codimension-2 point is very sensitive to wavevector shifts. Because 
superfluid effects tend to reduce qc, we might expect the codimension-2 point to occur 
at a higher Pr for a superfluid mixture than for a conventional fluid. However, even 
for a Boussinesq fluid, we could not expect perfect agreement between an experiment 
and predictions for the codimension-2 location, owing to the finite aspect ratio of an 
experimental convection cell. Nonetheless, if the location of the codimension-2 point 
in SMC experiments is close to that predicted by RBC calculations, which is the case 



292 G. Metcalfe and R. P. Behringer 

2 4 6 8 

Ra/Ra, 

FIGURE 14. Nusselt curve of P r  slightly below that for the crossing of the skewed-varicose and 
oscillatory instabilities. Here, the first roll instability is the oscillatory instability. At Ra/Ra, = 5.6 
there is a Hopf bifurcation with a frequency in good agreement with predictions for a roll planform 
at P r  = 0.19 and q = qc. Note the cusp in N as oscillations begin. 

in these experiments, that is an indication that the SMC-RBC analogy may remain 
valid well above onset, providing the experimental conditions are well chosen. 

We find that the crossing point between the oscillatory instability and the skewed- 
varicose instability occurs in the range 0.19 < P r  < 0.29. The precise wavenumbers 
and flow patterns are not accessible, but we expect that q will be near 3.1 when r is 
an even integer, and figures 14 and 15 show data for r = 4.00, 6.00, and 8.00. Note 
that for these aspect ratios 0.024 d & / d  d 0.049 for a typical value of A. = 0.14 mm. 

Figure 14 shows the Nusselt data for Pr = 0.19. Because low Pr is coincident with 
high AT,, we are only able to study relatively low aspect ratios such as r = 4.00. 
In this case, there is a forward Hopf bifurcation at Ra/Ra, = 5.6 with a single 
frequency of fz, = 8.8, where z, is the vertical thermal diffusion time. The measured 
frequency is in good agreement with the Clever & Busse prediction that fz, = 10 for 
q = qc = 3.114. However, the value of Ra at onset is substantially elevated from that 
predicted in figure 12. 

Figure 15 shows Nusselt data for P r  = 0.29. For r = 4.00 and Pr = 0.29, the 
skewed-varicose instability is the first instability of the convection rolls (leftmost 
arrow). There is, though, only a small decrease in N .  After this transition, the system 
next encounters the oscillatory instability at Ra/Ra, = 9.3 (rightmost arrow). Here 
fz, = 5.9, while for this Pr we should expect a dimensionless frequency around 19 if 
the rolls were at the critical wavevector. However, if the skewed-varicose transition 
encountered earlier had caused the loss of a roll pair and a corresponding wavevector 
reduction to q = 1.6, then we would expect a dimensionless frequency of 6, which 
agrees well with the data. However, this interpretation must be treated with caution 
because the decrease in N at the skewed-varicose transition is small compared to 
what we would expect for the loss of a roll pair. For r = 8.00, there is a very well- 
defined transition seen in the Nusselt number for Ra/Ra, = 2.12. Past this transition 
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FIGURE 15. Nusselt curves for P r  slightly above that for the crossing of the skewed-varicose and 
oscillatory instabilities. In (a) there is a discontinuous transition from a state of steady convection 
to another steady state with lower heat transport efficiency (lower N ) .  A lack of cooling power 
prevents examination of higher r at r = 8. The arrow in (b )  at lower r marks a discontinuity in N ,  
which is characteristic of the skewed-varicose instability, while the second arrow at higher r marks 
the oscillatory instability, which has a frequency consistent with the wavevector reduction scenario 
of the skewed-varicose instability. 

r P r  d To 7, f f7" f7" 
(obs.) (pred.) 

4 0.19 0.5745 1.075 16.3 0.54 8.8 10 
4 0.29 0.5747 1.302 32.6 0.18 5.9 19, 6 t  
4 0.23 0.5747 1.161 25.1 0.14 3.5 10.2 
8 0.23 0.2849 1.161 6.2 0.03, 0.73 0.2, 4.5$ 10.2 

(cm) (K) (4 (Hz) 

t First value for q = 3.117; second for q = 1.6 
$ Several oscillatory states exist near the crossing point; see Part 2. 

TABLE 1. Measured frequencies f of oscillatory states, scaled by the vertical horizontal diffusion 
time T", as a function of Pr. For comparison the predictions of Busse & Clever (1974, 1978, 1979) 
for qc = 3.117 (except as noted) are also shown. 

point the Nusselt number drops through a long chaotic transient to a new steady 
state, which is entirely consistent with previous observations of the skewed-varicose 
instability (Kolodner et al. 1986; Motsay et al. 1988; Walden et al. 1987). 

It is interesting to note the good agreement between the predicted and observed 
oscillation frequencies. Table 1 shows measured frequencies of simple oscillatory 
states scaled by the vertical horizontal diffusion time T"(= d 2 / X e f f )  as a function 
of P r  along with predictions of Clever & Busse (1974), Busse & Clever (1979). The 
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agreement between theory and experiment for P r  = 0.19 and 0.29 is good, and away 
from the crossing point agreement is to be expected since the Busse calculations have 
been quite successful at Prandtl numbers appropriate to mercury, (pure) helium, water 
and oils. In the neighborhood of the crossing, however, it is unclear how to interpret 
the frequencies because physical processes not accounted for in the calculations must 
become important. None of the frequencies at P r  = 0.23 can be made to reasonably 
fit into the Busse balloon picture. 

A compilation of the data for the secondary transitions is given in figure 13. 
Specifically, circles show data for r = 8.0, triangles for r = 6.0 and squares for 
r = 4.0. Open symbols denote a transition from steady to steady convection, 
and solid symbols denote a transition from steady to oscillatory convection. For 
comparison, the solid diamonds show the data of Maeno et al. (1985) for SMC taken 
in a r = 1.0 circular cell; these data always encounter the oscillatory instability 
and also show good agreement with predicted frequencies. One may immediately 
notice from this figure that the presence of sidewalls considerably boosts the Rayleigh 
number for the onset of roll instabilities from that predicted for an infinite layer. Data 
points from the smaller aspect ratios are up to 10 times the predicted values. However, 
for a given P r  the larger one makes r ,  the closer one comes to the infinite layer 
predictions. For r = 8.0 the data and predictions are in disagreement by only a factor 
of 2. This is always the case for a small aspect ratio container; Croquette (1989a, b) 
has shown that only above about 28 rolls do the predicted and observed Rayleigh 
numbers for instability onset show good agreement. 

5. Conclusions 
SMC is interesting for at least two reasons: first, because it is a system which can 

closely approximate RBC but has the remarkable Prandtl number range 0.04 < P r  < 
1.5; and second, because SMC can be made to deviate from RBC in a controlled way, 
providing a novel and completely different form of convection. The former gives SMC 
the potential to be an extremely valuable tool for understanding convective flows, but 
the extent of the superfluid corrections must first be determined and understood. 

We find that both Rae and qc are affected by superfluid effects, and the calculation 
of Rae in terms of the layer height suggests a direct method for quantitative determi- 
nation of the superfluid effects in terms of the superfluid dissipation length scale 1,. 
We have built a variable aspect ratio convection apparatus and have measured A, as 
a function of temperature. 

Whether or not SMC is well approximated by the Boussinesq equations depends 
on the ratio A 0 / d  When it is less than NN lop1, superfluid effects induce small shifts 
in Rae and qe due to the reduced buoyancy but otherwise do nothing. In this case 
we conclude that SMC well approximates RBC near onset. As Ao/d  increases above 
lo-' though, the superfluid effects rapidly stabilize the layer heated from above and 
damp out convection altogether. In this case SMC does not approximate RBC with 
ideal conducting boundaries. Experimentally, the condition d $1, is easily realized for 
all but the shortest of cell heights, so that superfluid effects in SMC are normally 
negligible at the onset of convection. 

The situation far above onset is less certain. As there are no calculations available 
for the SMC nonlinear states, a similar coupled theoreticalkxperimental approach 
for quantifying superfluid effects above onset is not at present possible. Additional 
experimental and theoretical work is required to better characterize superfluid effects 
on the convective flows well above onset. However, from comparison of measured 
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SMC nonlinear instability properties with predictions of RBC calculations - in 
particular oscillatory instability frequencies and the location of the codimension-2 
point - we may with some confidence conclude that the SMC-RBC analogy also 
holds reasonably well up to the level of the secondary instabilities. The experimental 
evidence suggests that departures of SMC from the Boussinesq equations are no 
stronger than finite aspect ratio effects, and thus SMC remains well suited to the 
study of nonlinear instabilities. A survey of novel low-Pr instabilities is the subject of 
Part 2. 

This work has been supported by the NSF under grants DMR-9017236 and 
DMR-9321791. 
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